Cross-sectoral innovations in techno-industrial systems: Lessons from Emilia Romagna.

Antonio Andreoni
Lecturer in Economics, SOAS Economics Department, University of London
&
CSTI Research Fellow, Engineering Department, University of Cambridge
Outline

1. Metals, mechanics, mechatronics and beyond: a manufacturing system perspective

2. New value creation/capture opportunities and structural innovation dynamics: interdependencies & mechatronics platform

3. Cross-sectoral innovations in ER: common technology systems and manufacturing linkages
 - Cambridge University Research project on Manufacturing linkages – Electro medical devices (Antonio Andreoni, Eoin O’Sullivan and Michael Best)
 - Research project on Automation synergy – Packaging machines, Pharma segment (Antonio Andreoni, Giorgio Prodi and Marco Bertinelli)

4. Industrial policy implications
Metals, mechanics, mechatronics and beyond: a manufacturing system perspective

- The strategic role of the metal-mechanic sectoral system

 ✓ Value creation: Engine of growth, specialisation and technical change
 ✓ Value creation and capture: Macroeconomic stability and balance of trade

- What is its broader strategic role in the modern manufacturing system?
Metals, mechanics, mechatronics and beyond:
a manufacturing system perspective

Division of labour/production tasks, specialisation and new sectors development

Adam Smith
“The Wealth of Nations”, 1776

Mechanical computer: First mechanical computing machine and the new manufacturing system

Charles Babbage
“On the Economy of Machinery and Manufactures”, 1832
Metals, mechanics, mechatronics and beyond: a manufacturing system perspective

- Modern manufacturing systems consist of complex interdependencies, often across a range of industries, which contribute a variety of components, materials, production systems and subsystems, producer services and product-related service systems.

- Modern manufacturing companies orchestrate production processes through complex producer networks spanning across countries, as well as different industrial sectors.
Metals, mechanics, mechatronics and beyond: a manufacturing system perspective

The multi-layered architecture of modern mfg systems

STRUCTURAL LAYER: Overlapping sectoral value chains

OPERATIONAL LAYER: Sectoral value chains are decomposable in functional stages of production

ORGANISATIONAL LAYER: Variety of mfg system actors (drivers, complementors, contractors, specialists, intermediaries)

TECHNOLOGICAL LAYER: Variety of technologies (enabling platform technologies, infratechnologies, production technologies, proprietary technologies etc.)

Metals, mechanics, mechatronics and beyond: a manufacturing system perspective

The multi-layered architecture of modern mfg systems

New value creation/capture opportunities and structural innovation dynamics

- Processes of **value creation and national value capture** are changing in nature
 1. Value is **nested** in specific functional tasks
 2. Value is **created** through the combination (and recombination) of increasingly complex technology systems and platforms (also production technologies & competencies)
 3. Value is **captured** by major companies (system drivers) commanding critical stages of sectoral value chains
New value creation/capture opportunities and structural innovation dynamics

- **Structural innovation dynamics are also changing in nature**
 1. The most innovative economies are those endowed with *manufacturing scaling-up competencies* (PIE-MIT)
 2. Innovations are enabled by *technology platforms* (such as nanotechnology, micro- and nanoelectronics including semiconductors, advanced materials, biotechnology and photonics, *mechatronics application*)
 3. Cross sectoral innovations: *applications of similar technical innovative solutions across and within sectors*
Cross-sectoral innovations in ER: common technology systems and manufacturing linkages

What makes the Emilia Romagna techno-industrial system more competitive?

- **Medical device valley** (90/120 companies, leading cluster in Europe for disposable and electro medical devices for haemodialysis and cardio surgery)
- **Plastics valley** (co-moulding, injection moulding machines etc.)
- **Packaging valley** (30% global market shares, food, pharma/medical and healthcare – IMA, Marchesini, Sitma, Sacmi etc.)

...And many other ‘**hidden champions**’ in the metal-mechanics sector such as TREVI (deep foundation engineering, tunnelling, geothermal energy) or agrotech sector such as Dinamica Generale (on-board solutions, precision feeding, agri solutions)
Cross-sectoral innovations in ER: **common technology systems and manufacturing linkages**

The existence of a ‘**common’** set of core industrial competences and capabilities underpinning:

- the successful **clustering** of multiple companies producing similar (technologically similar) class of products
- the **overlapping and ‘compulsive sequence’ of innovation dynamics within and across sectors**: from mechanics to electronic machines, from automation to robotics, from advanced materials to smart products, from precision engineering/mechanics to critical system products...
- A dynamic inter-sectoral process of structural change whereby different sectors evolve at **different speeds** and trigger **technology push-pull dynamics**
Cross-sectoral innovations in ER: common technology systems and manufacturing linkages

Electro-medical devices rely upon a complex mix of platform based technologies and an inherently different (although highly complementary) spectrum of capabilities and underpinning competences in **electronics, software, mechanics, plastics, mechatronics, pumps and fluid control systems.**

Cross-sectoral innovations in ER: **common technology systems and manufacturing linkages**

- **Fluid system**
 - Pumps, valves...

- **Flow system**
 - Plastic tubes, micro-tubing...

- **Filtration system**
 - Mechanical filtration, membranes...

- **Control system**
 - Load cells, heat exchanger...

- **Electronic system**
 - Sensors, embedded mechatronic apps, software...

<table>
<thead>
<tr>
<th>Table 1: Specialist Contractors, case studies</th>
<th>Competencies</th>
<th>PUSH ></th>
<th>Opportunities</th>
<th>< PULL</th>
<th>Value Chain Activities</th>
<th>Geographical boundaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOW SYSTEM</td>
<td>Lean</td>
<td>Small size: 1995</td>
<td>Production</td>
<td>Operations/Management</td>
<td>Enabling</td>
<td>Product-opportunities within biomed</td>
</tr>
<tr>
<td>Core technology Domains</td>
<td>-Flow system -Fluid management -Pumps -Valves -Special connectors -Vol. flow meter -Dynamometer cells</td>
<td>-Compounding -Pilot moulds -FIA -micro extruders (internally produced) -Tri & four layer extruders -Clean rooms</td>
<td>-Customisation -Certification -Risk reduction</td>
<td>-Bridging R&D -Component/product testing and risk analysis -Patent analysis</td>
<td>-Multi lumen/layers microtubes -Braided & armoured tubes -Flexi/modular tubes</td>
<td>-Biomedical -Biomedical -Automotive To -Aerospace -Industrial To -Pharma Specials -Chemical To -Components & subsystem design -Engineering -Prototyping & PS To -Scale up -Certification -Post sale services</td>
</tr>
<tr>
<td>FLUID SYSTEM</td>
<td>ENKI</td>
<td>Small size: 2002</td>
<td>Production</td>
<td>Operations/Management</td>
<td>Enabling</td>
<td>Product-opportunities across sectors</td>
</tr>
<tr>
<td>Core technology Domains</td>
<td>-Tubes -Catheters -Balloons -Micro components in plastics -Polymers -Photronics</td>
<td>-Compounding -Pilot moulds -FIA -micro extruders (internally produced) -Tri & four layer extruders -Clean rooms</td>
<td>-Customisation -Certification -Risk reduction</td>
<td>-Bridging R&D -Component/product testing and risk analysis -Patent analysis</td>
<td>-Multi lumen/layers microtubes -Braided & armoured tubes -Flexi/modular tubes</td>
<td>-Biomedical -Biomedical -Automotive To -Aerospace -Industrial To -Pharma Specials -Chemical To -Components & subsystem design -Engineering -Prototyping & PS To -Scale up -Certification -Post sale services</td>
</tr>
<tr>
<td>ELECTRONIC SYSTEM</td>
<td>EGICON</td>
<td>Turnover > 5mio euro</td>
<td>Production</td>
<td>Operations/Management</td>
<td>Enabling</td>
<td>Product-opportunities across sectors</td>
</tr>
<tr>
<td>CONTROL SYSTEM</td>
<td>Dinamica Generale</td>
<td>Medium size: 1990</td>
<td>Production</td>
<td>Operations/Management</td>
<td>Enabling</td>
<td>Product-opportunities within biomed</td>
</tr>
<tr>
<td>Core technology Domains</td>
<td>-Load cells -Bio indicators -Control units -Pressure sensors -Near infrared spectroscopy</td>
<td>-Fully automated production lines -Controlled production environments -Machine tools (internally produced)</td>
<td>-Product development management -Mgt of certified subcontractors -Customisation -Certification -Risk reduction for focal firm clients</td>
<td>-Bridging R&D -Research Lab Component/product testing and risk analysis -Patent analysis -Multi markets analysis</td>
<td>-Wtighing systems -NIR solutions -Integrated control systems</td>
<td>-Incubator monitoring -Blood circulation control unit -Automated zootech systems -Precision feeding systems</td>
</tr>
<tr>
<td>FILTRATION SYSTEM</td>
<td>GVS</td>
<td>Big size: 1979</td>
<td>Production</td>
<td>Operations/Management</td>
<td>Enabling</td>
<td>Product-opportunities within biomed</td>
</tr>
</tbody>
</table>

Cross-sectoral innovations in ER: common technology systems and manufacturing linkages

Packaging machines have evolved, over the past two decades, from an architecture based on mechanical components, into a combination of mechanical transmissions, robotics, interfacing electronics, and control software. This modularity prompting the need for new production capabilities, pave the way for a totally integrated mechatronic platforms.
Cross-sectoral innovations in ER: common technology systems and manufacturing linkages

Italian Machines VS German Machines (Avg)

IMA Perception VS German Suppliers (CP)

Cross-sectoral innovations in ER: common technology systems and manufacturing linkages

Cross-sectoral innovations in ER: common technology systems and manufacturing linkages

Automation Profiles:
Different configuration of automation subsystems based on the same core-competences

Mechatronic platforms with customized software and high precision and ad hoc mechanical solutions

Industrial policy implications

• Sectoral policies are increasingly substituted by/combined with cross-sectoral policies aimed at picking cross-cutting technologies: major focus on general purpose technologies, enabling technologies, multi-KETs and platforms development.

• Increasing emphasis on ‘selective learning’ and technological infrastructure provision for reducing the risk involved in technological change, scaling up production and addressing manufacturability challenges: focus on infra-technologies and quasi-public good facilities for specialist contract R&D, rapid prototyping, quality/standards development...

• Multi-layered industrial policy models have been increasingly adopted to respond with more flexibility to the complexity of modern manufacturing systems, however raising challenges with respect to governance and enforcement.

Thanks
aa155@soas.ac.uk
aa508@cam.ac.uk

Antonio Andreoni
Lecturer in Economics, SOAS Economics Department,
University of London
&
CSTI Research Fellow, Engineering Department,
University of Cambridge
References

